

Trench Silo Offers Inexpensive Meàns Storing Green Feed For Dairy Herd

BY J. A. AREY, Extension Dairyman
WHis TYPE or sill has grown in popularity in North Carolina very rapidly during the past three years as shown ear this type of silo was used in the state 41 were dug in 1933171 and in 1934, 372 Present indications are that there will be around 400 dug this summer.
The trench silo is an inexpensive type of silo. It is well adapted to the medium to of the upright silo and the type of cutting equipment required to fill it is rather heavy. The labor cost on many of the trench silos already dug has been around 50 cents per on. In many cases no actual cash wang odd times by the regular farm labor. The material needed for the rool of an average size trench silo can usually be secured on the farm at small cost.
The construction of the trench silo is simple and can be accomplished with or dinary farm labor. The only tools neeted consists of a plow, drag pan, shovel, pick The a team of mules or tracto
The equipment required for filling the rench silo is less expensive than that re-
uired in filling the verticle silo since mall cutter without blower will do the work satisfactory. Such a cutter with a capacity of three to five tons per hour that can be operated with a $5 \mathbf{H}$. P. gasoline engine now quoted at $\$ 75$ to $\$ 100$.
LOCATION
To give best results the trench silo shoul be located convenient to the place wher the cattle are to be fed, and where gocd
drainage is possible. The most desirgble drainage is possible. The most desirable
soi. is a stiff clay free from rock. What soi. is a stiff clay free from rock. Whan possible it is best to locate the trench sio on a slope or hillside, digging the trench back into the hill. By giving the bottom lower end natural drainage can be secured When a hillside location is not available it is often possible to drain the trencl by means of a small tile leading to a ditch or other lower elevation. Small stones should be placed around the intake so as to preven silage from clogging the tile.
The size of the trench silo should be determined by the number of animals to be fed and the length of the feeding perioid The depth mutiplied by the average width and that by the length will give the capa silo, six feet deep, seven feet wide at the op and five at the bottom (averaging six eet wide) and 70 long would equal $6 \times 6 \times 70$ or 2520 cubic feet. The average weight of cubic foot of silage from a trench sillo about 35 pounds. In this case the tot weight would be 2520×35 or 88,200 pounds. The number of cubic feet of silage needed can be determined by multiplying the numdays in the feeding period, since the aver age cow will consume a cubic foot of silage each day. For example, to feed a medium ize herd of 24 cows 180 days would requir 4×180 or 4320 cubic feet of silage.
The width and depth of the trench silo hould also be governed by the number of cows to be fed daily. A slice of silage hree to five inches thick beginning a the top and extending to the bottom of the no should be fed daily in order to pre by the width and depth is too large for the number of cows to be fed daily, ex cessive spoilage will take place. Capacit should be secured by increasing the length of the silo rather than the width or depth Table 1 gives te size of the herd, the suggested width, depth and length of th silo based on feeding a cow one cuble Tabe 1-Suggested Demensions for

Trench Silo

No. of Width Width at

Length Base Cows At Top Bottom
on 180 Days Feet Period Fe

	Feet	Feet	Feet Period Fe			
6	6	4	5	43		
8	6	4	5	56		
10	7	5	5	60		
12	7	5	6	60		
14	7	5	6	70		
16	8	6	6	69		
18	8	6	7	66		
20	9	7	7	64		
24	10	8	7	69		
		CONSTRUTION				

After the location is determined measur ff the desired area and mark each corne ine months of the year. From two to thre acres are sufficient to graze a mature animal for this length of time if the season in normal. Calves running with their dams with no supplementary feed wini usuall weigh about 400 pounds at weaning time There are thousands of grazing that is not now being utilized and it is thought that eventually such areas will be more generally tilized for cattle grazing. This type of fee is too coarse for other types of livestock such as sheep or detry cat.

JOHN A".AREY
measured area ana remove the loose dirt with a drag pan. When the land on which the silo is located is practically level the ends of the trench should be gradually walk in and out without difficulty. It is advisable to leave the slope in the end from which the silage is to be removec so that the silage can be hauled out in a cart. The other end should be dug out and given the same slope as that of the side walls. The side walls should be smoothed with pick and
shovel Loose soil, such as sand, will cave shovel. Loose soil, such as sand, will cave easily and when it is necessary to locate a silo in such soil the walls should be reincred with concrete or lumbre. When itimer is erection The plank should be placed in an upright position and not lensthwise with the trench and should be treated with hot creosote. The side walls, regardless of whether they be clay, concrete or plank, should be smooth so that the silage will pack tightly against them. If the walls are rough air pockets will be formed which will result in spoiled silage
ROOF

ROOF
A roor is not needed to preserve the silage, at is needed to prevens the walls of unlined action when the silo is empty. The kind of oof to build will depend upon the available maerial. On farms where inch plank are or shed type can be constructed out of them. FILLING THE SILO
Silage should be cut in 1-2-inch lengths since it packs better than if cut longe The knives of the ensilage cutter should be kept sharp and adjusted close to the shea The silage should be thoroughly packe y persons, animals or a tractor while s being put in the silo. Special packin should be done around the walls. To aid in packing, and thereby improve the keeping qualities of the silage, water should be added to it continuously during the filling opera tion. This can be done convenienly with a hand sprinkler, or a water hose. If the water may be allowed to flow directly into the blower.
the blower.
Regardless of the method used to distrithe silage next to the walls is thoroughl wet. Dry clay walls have a tendency to ab orb moisture from the silage
When the silo is completely filled, cover it three to four inches thick with a laye
of cut straw, chaff, or other similar mater lals. Wet this material thoroughly and pact It well, then cover with 10 to 15 inches of soil. This should be wet and thoroughly packed. Packing should be repeated as silage settles so that all cracks and air pockets may be eliminated. THE SILAGE
To remove silage from a trench silo begin at the drainage end and first remove the silage to be fed that day. Beginning at the top and going through to the bottom of the silo a slice of silage not less than three inches thick should be removed from the end each day to prevent spoilage. $\$ 35.00$ UP.

WOODSFIELD,

Streep Raising Gains In Ponularity Among

N. Carnlina Farmers

Mrulent Tambs And Wonl Ac Adionet To Ralanced Sustem Of Farming
Is Recommended By Specialist Is. Recommended Bv Specialist By L. 1. CASE
Speeialist, State College
The production of market lambs and wool as an adjunct to a well belancel system of
general farming has been and will no doubt continue to be one of the best pay ing branches of animal husbandry in North Carolina.
There is very little outlay necessary for a small flock and the sale of wool alone
will often pay the cost of keeping the flock the entire year. The reason for this is that sheep in small numbers will make much of their living from waste products of the farm. Another thing, a small flock of sheep can be changed often from one part of the farm to another which practice helps materially in controlling parasites.
The advantage of small farm flocks in comThe advantage of small farm flocks in com-
parison with larger ones cannot be over emphasized. The writer has seen so many instances of marked financial successes with small flocks while the same farmers have had difficulty when the size of the flocks were increased.

MUTTON TYPE FAVORED
The medium-wool or mutton type of sheep are the most. practical in this State. The
Hampshire breed predominates although we have a goodly number of Shropshires, Dorets and Southdowns.
The northwestern counties have our larg-

Field Demonstration in selecting sheep for Exhibition, Waco, N. C. This sheep is pure
bred Hampshire, a good general purpose breed.
est sheep populations, although the entire mountain area is near ideal for sheep growing on account of good drainage and cim teep pastures ing sheep than larger animals.
Piedmont and Eastern North Carolina presents many favorable opportunities for profitable sheep raising. In fact, some of Here an abundance of winter grazing crops can be provided, making it possible to breed for early lambs which can be put on the market ahead of the heavy run of lambs from Kentucky, Tennessee and Vir ginia, thus assuring a good price.
Marketing of lambs and wool is getting on a better basis than heretorore. Where thes products are produced in sufficient quan sales are resulting in more money to the farmer.

Cotton Acreage Is Between

 27,515,000 And 29,973,000Cotton acreage may not be quite so large as was expected earlier in the sedson, ac inning of the season both the U. S. De partment of Agriculture and private estimators anticipated a big increase in acreage. As the season progressed it became evident that the plantings wauld not be up to ex pectations because of wet weather and The acreage for the total United Statas ast year was $27,515,000$ acres compared with 29,973,000 acres in 1933. At present private estimates indicate the acreage will be somewhere between these two figures for the coming season.

FARMLIGHT PLANTS

NEW 1935 STREAMLINE MODELS
110 volt A. C. (City Current) PLANTS
$\$ 110.00$ UP

COMPLETE, READY TO RUN

FREE Wiring and cost estimates furnished.-FREE Literature 310 Gallon Dayton Electric Automatic Water Systems Complete,

CARRVER ELECTRIC CO.
ENGINEERS-CONTRACTORS ,

