THE PROERESEIVE FARMER

Timely Farm Suggestions

By TAIT BUTLEER

WHET SOL ANALYSES, MEAN
Chemical Analyses Cannot Reveal the Physical Conditions of Soils Nor the, Availability of the Plant Foods Contained, and Hence Are of Limited Value Onily

AREADER sends us a report of the chemical analyses of two soils and makes the following request: Ine the right kind of fertilize that I need to apply to this land to grow cotton? I know, of course, that
the right thing to do is to plant and the right thing to do is to plant and
turn under legumes, which I shall do on some of it, but can not do this to all of it the first year. Tell me the per cent of potash, nitrogen, lime and phosphoric acid any soil should contain to grow successfully corn, oats, cotton and alfalfa."
The chemical analyses of these two samples of soils, taken within 10 feet of each other, but from soils having different appearance to the eye, shows
Calcium oxtde (llmer CaO..... 0.91 per cent Potesh
Phoph
Pltroge Phosphor
Ntrogen
No.
No
moxide (lime)
 itrogen To a depth of about seven inches we may assume that an acre of soil weighs about $2,000,000$ pounds. On this basis there will be the following amounts of plant foods in the top seven inches of these soils, per acre:
 Potash \quad Pho
Nitrogen \qquad
Cavo 2- ${ }^{\text {Na }}$ Potaium oxide (11me) ${ }^{13,000}$, pounds Phosphoric
Niturogen

Corn- 2,00 bse erain - 60 bushels. Ootton 500 Ibs, lint. 1,000 3,000 bis. seed, thell, teives, eto

The crops mentioned in our inquiry contain the following amounts of these plant foods:
Every one knows that no crop can long before the supply of any plant food is entirely exhausted the crops become unprofitable, or may even become unprontable, or may even
cease to grow. But were it possible cease to grow. But were it possible
for crops to obtain all the plant foods or crops to obtain all the plant foods in these soils any one can, from the data given above, calculate the num-
ber of crops it-would take to exhaust ber of crops it would take to exhaust
all the plant foods in them. For instance, there is as much phosphoric acid in soil No. 1 as in 99 crops of 50 bushels of corn grain, and in No. 2 as much as in 77 such crops. No. 1 contains as much potash as there is in 393 crops, and-No. 2 as much as in No. 1 is equal to that in 60 crops of 50 bushels of corn grain per acre, and that in No. 2 is equal to 39 such crops. From these facts it ought to be plain to any one that these soils should not require fertilizers containing potash, nor do they probably need lime. Indeed, if the plant foods named-nitrogen, phosphoric acid, potash and lime-were the only things heeded to make a productive soil
these two soils shomld yield large crops for a number of years. These
facts bring out the important truth that while there may be an abuindance of these plant foods in a soil it may still be unproductive. This failure to produce well may be due to these plant foods not being available for the use of the plants and if they are in such condition that the plants can not use them they might as well not be present so far as the productiveness of that soil is concerned. Or these plant foods might be present in such state that there would be sufficient available to feed the crops if other conditions such as drainage, moisture and cultivation were right moisture and cultivation were right
and yet if these other conditions were not right the yield would be small. A chemical analysis of a soil does no tell anything about these other es sential conditions to crop production,
nor does it tell what proportion of nor does it tell what proportion of available for feeding the crops, under the average or general conditions of that particular soil.
It is therefore apparent that a soil analysis alone is not sufficient to enable any one to state the fertilizers which must be applied to make any given soil productive. If the soil is unproductive it may be because there is not sufficient plant food present. In that case the analysis would show the fact; but the fack of productiveness may be due to the fact that the plant foods present in the soil in sufficient quantities for many crops are not soluble or available for feeding the crops; or the trouble might be any one of many
other conditions which cause small crop yields and in such a case the chemical analysis would throw no light on the cause of the low production by that soil.
duction by that soil.
But whe the any soil is not all available, if there is a very large amount present, sufficiento is

Lime	Potash	Phos. Adid	Ni
0.816s.	${ }_{49.0}^{11.21 \mathrm{bs}}$	18 10	
19.0	89,	${ }_{\text {\% }}^{12.8}$.	${ }^{32} 5$
co. $\begin{gathered}0.5 \\ \text { 3.1 } \\ 78.0 \\ 71.8\end{gathered}$		0.0 18.0 12.2 12.	1.0 Si,0 40.0
34	168.0	40.0 "	198.0

likely to be available for large crop production. Hence, there are arbitrary
standards which have been fixed for standards which have been fixed for
estimating the fertility of a soil from estimating the fertility of a soil from
its chemical analysis or the plant its chemical ana
foods it contains.
For instance, Prof. Mooers, of the Tennessee Experiment Station makes the following classification on yields per acre and chemical analyses, which will be of value to the reader in studying the two analyses we have given above, as soils Nos. 1 and 2:

Lime

Less the0.20 to 0.40

0.10 to 0.14

Over 020

Judging the soils Nos. 1 and 2, an- main low, because from a feeder alyses of which were stated at the standpoint the results would be as beginning of this article, No. 1 is good or better and in addition there
"rich" in lime; "medium" in potash; would be a second profit of consider"rioh" in time; "medium" in potash; would be a second profit of consider-
"poor" or nearly "medium" in phos-" able importance in the increased valpoor" or nearly "medium" in phos- acid, and "medium" "to good" ue of the manure. But while Northin nitrogen. No. 2 is "rich" in lime: in nitrogen. No. ${ }^{\text {good" in potash; "poor" in phos- }}$ phoric acid and "pogr" in nitrogen. ity offered them, we fear our South Taking this classification as applied ern feeders will also fail to profit by ble that it will pay to use acid phos-
phate on these soils. As our inquirer says, these soils need legumes plowed under or stable manure; but until this can be done it is quite probable that a moderate application of nitrogen may also pay. At' present prices, cottonseed meal is possibly our cheapest source of nitrogen especially for cotton and corn; but since alty nitrogen applied to fall-sown the spring, possibly nitrate of soda may be preferable for a top dressing for that crop.

Value of Different Sources of Lime

A READER asks
"Which would containing 89.31 per cent of catcium carbonate or oyster shell lime?"
Oyster shell lime, when properly burned, contains from 85 per cent to 95 per cent calcium oxide. Assuming that the oyster shell lime is 90 per cent calcium oxide, then 100 pounds of this lime will contain as much calcium as about 180 pounds of the "agricultural lime," which is 89.31 per cent calcium carbonate. In othe words, based on their calcium (or only true basis of comparing their values, 100 pounds of the oyster shell lime (90 per cent calcium oxide) is worth as much as 180 pounds of the "agricultural lime" (89.31 per cen calcium carbonate). Anyone can cal culate the comparative values of dif ferent grades of burned lime (cal cium oxide) and ground limestone (calcium carbonate) if he remembers that pure calcium oxide, is 71.4 pe bonate is 40 per cent calcium.

Buy Cottonseed Meal Now

THOSE who expect to use cotto eed meal, either for winter feeding or for fertilizer next spring,
should buy it now if they can possibly command the money to do so. With corn around 70 cents a bushel, or a little above, in the North, the catfle feeders are not going to be slow tonseed meal. With corn at 70 cents a bushel they can, well afford to pay $\$ 35$ a ton for cottonseed meal to take the place of half the cors usually fed. That is, they can, at such prices, well afford to continue to take out two pounds of corn and put in its place anly one pound of cottonseed mea until at least one-half the amount or corn usually fed is replaced with cottonseed meal. Owing to a prejudice against the liberat use of this excellent cheap feed Northern feeders are not likely to use cottonseed meal to the extent indicated; but they could well afford to do so and will certainly increase their use of it if prices re Perc Cent.

	Pot
	Per C
Less th	
2	0.10 to
	0.15 to
0	0.25 t
	Over

\qquad $1{ }_{10} \frac{\mathrm{Le}}{\mathrm{Pe}}$

Nitrogen
\qquad
\qquad
${ }^{\text {Pes }}$
Per Cent.
Less then 0.0 .
0.07 to 0.10
0.14 to 0.30 ton.
to the two soils in question, it seems the present low price of meal, owing the the two soils in question, it seems ply either lime or potash to these ply either lime or potash to these
soils to obtain large crops. While soils to obtain large crops. phosphoric acid it is entirely probaphosphoric acid it is entirely proba-
ble that it will pay to use acid phos-
to the scarcity of money. When their cotton seed have been sold at a low cotton seed have been sold at a low price the price of meal is certain to we rence as the demand increases and, we repeat, all those who expect to use meal should buy it at the present low prices if they can-possibly command the money to do so.

Which is the Cheepes Feed-Cotran

 Seed or Cotomened meal and intils WHICH is the best feed for cattle cotton seed or hulls and meen? Seed are selling here for $\$ 15$ a tom Which would be best, keep the seedor sell the seed and buy hulls and or sell
If our inquirer had given us the price of meal and hulls and the cost of hauling the seed to market and the meal back to his farm we could give a definite answer to his ques tion. This and many other inquiries seem to indicate that some people think the seed will take the place of both hulls and meal. They will not do so for feeding cattle, because cat le need more roughage or coarse le need mon coarse eed than is supplied by the amoun of seed which may be satisfactorily ed. The meal in a ton of seed out weighs the 100 pounds, as produced by the mills The amount of meal obtained from ton of seed is usually over 800 pounds and the amount of hulls under 700 pounds. But when meal and hullit are fed at least four pounds of hulls should be given to every pound of meal, if no other roughage is used Cotton seed and cottonseed meal both being concentrates, are more easily compared in feeding value With seed at $\$ 15$ a ton cottonseed meal is worth about $\$ 22.50 \mathrm{a}$ ton, or meal is worth about $\$ 2.50$ a ton, or possibly $\$ 23$ a ton. to market farm On and the meark to the farm. On the other hand, as we have often pointed out, a full ration of seed can not be satisfactorily used, because the excess of oil which they, contain is likely to cause scouring. A langer amount of nutrients, or a larger part of the ration, can be supd plied from cottonseed meal. For in 4 stance, six pounds of meal daily is of 9 ten given to steers weighing ol0 to 1,000 pounds. To give an equal feed value in seed would require nine pounds of seed daily, and this would very tikely canse scouring and unsatis results. Three peunds satisiactory of seed are abound of ment but this value to two pounds or meal, out this is only true up to the small amount of seed-three to five pounds a da
which can be satisfactorily used.
When three pounds of seed will not buy two pounds of meal and also pay for the hauling we advise using seed up to three to five pounds a day for an animal weighing 700 to 1,000 pounds, but if more feed is required we would then trade seed for meal or sell seed and buy meal on the best terms possible to obtain.
Hulls at $\$ 5$ a ton are cheap, at the present prices of salable hays, but presage and corn stover may be proilage the farm and will form uced on the farm and wil form as good or greater cost than hull at $\$ 4$ to $\$ 5$, on. If, however, roughage must ${ }^{p}$ bought we know of ane ton.
When seed are selling for $\$ 15$ a ton ton of seed will buy 600 pounds of cottonseed meal and 3,000 ponnds of hulls, allowing $\$ 25$ a ton for the meal and φ a ton for the cattle the no other roughage 1 male a better rad meal and hulis wit make a better ration than would the coutonseed and the proportions stated-one to friven are about the correct ones for mixe ing meal and hulls, when these form the entire ration of cattle.

